Dynamics of climate and ecosystem coupling: abrupt changes and multiple equilibria.

نویسندگان

  • Paul A T Higgins
  • Michael D Mastrandrea
  • Stephen H Schneider
چکیده

Interactions between subunits of the global climate-biosphere system (e.g. atmosphere, ocean, biosphere and cryosphere) often lead to behaviour that is not evident when each subunit is viewed in isolation. This newly evident behaviour is an emergent property of the coupled subsystems. Interactions between thermohaline circulation and climate illustrate one emergent property of coupling ocean and atmospheric circulation. The multiple thermohaline circulation equilibria that result caused abrupt climate changes in the past and may cause abrupt climate changes in the future. Similarly, coupling between the climate system and ecosystem structure and function produces complex behaviour in certain regions. For example, atmosphere-biosphere interactions in the Sahel region of West Africa lead to multiple stable equilibria. Either wet or dry climate equilibria can occur under otherwise identical forcing conditions. The equilibrium reached is dependent on past history (i.e. initial conditions), and relatively small perturbations to either climate or vegetation can cause switching between the two equilibria. Both thermohaline circulation and the climate-vegetation system in the Sahel are prone to abrupt changes that may be irreversible. This complicates the relatively linear view of global changes held in many scientific and policy communities. Emergent properties of coupled socio-natural systems add yet another layer of complexity to the policy debate. As a result, the social and economic consequences of possible global changes are likely to be underestimated in most conventional analyses because these nonlinear, abrupt and irreversible responses are insufficiently considered.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Biogeophysical feedbacks trigger shifts in the modelled vegetation-atmosphere system at multiple scales

Terrestrial vegetation influences climate by modifying the radiative-, momentum-, and hydrologicbalance. This paper contributes to the ongoing debate on the question whether positive biogeophysical feedbacks between vegetation and climate may lead to multiple equilibria in vegetation and climate and consequent abrupt regime shifts. Several modelling studies argue that vegetation-climate feedbac...

متن کامل

Dynamics of habitat changes as a result of climate change in Zagros Mountains Range (Iran), a case study on Amphibians

Climate change is currently considered a serious threat for many species and recognized as one of the most important factors in the global biodiversity loss. Among animal groups, amphibians are known to be among the most sensitive groups of vertebrates to climate change due to their inability to travel long distances, and mountain habitat species are more exposed to climate change pressures tha...

متن کامل

بررسی تأثیر تغییرات اقلیمی بر روی بیماری های انگلی

Introduction: Climate changes are one of the factors associated with human activities for the destruction of the ecosystem. This factor leads to global warming, changing rainfall patterns, increasing the amount and severity of climate factors such as storms, and rising sea levels. Parasites are also an integral part of this ecosystem; therefore, the present study considered the effect of climat...

متن کامل

“Dangerous” Climate Change: Probabilistic Integrated Assessment, Ecosystem Impacts, and Abrupt Climatic Change

One of the most controversial conclusions to emerge from many of the first generation of integrated assessment models (IAMs) of climate policy was the perceived economic optimality of negligible near-term abatement of greenhouse gases. Typically, such studies were conducted using smoothly varying climate change scenarios or impact responses. Abrupt changes observed in the climatic record and do...

متن کامل

On the cause of abrupt vegetation collapse in North Africa during the Holocene: Climate variability vs. vegetation feedback

[1] The abrupt desertification over the northern Africa in the mid-Holocene is studied in both a complex and a simple coupled climate-vegetation model. In contrast to the previous mechanism that relies on strong positive vegetation-climate feedback and the resulted multiple equilibria, we propose a new mechanism in which the abrupt desertification is caused by low frequency climate variability,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Philosophical transactions of the Royal Society of London. Series B, Biological sciences

دوره 357 1421  شماره 

صفحات  -

تاریخ انتشار 2002